
Tetrahedron
Tetrahedron Letters 45 (2004) 2399–2402

Letters
A novel method for the preparation of benzylidenecyclohexanes with
high optical purity
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Abstract—The enantioselective reaction of the a-thio carbanion derived from 1-phenyl-1-(phenylthio)-1-(tributylstannyl)methane
with 4-substituted cyclohexanones in the presence of bis(oxazoline)s gave the products as a diastereomeric mixture. Each diaste-
reomer obtained had high optical purity. The reaction of the a-seleno carbanion derived from the bis(phenylseleno)acetal also
showed high enantioselectivity. The stereospecific elimination of the isolated diastereomers on treatment with methanesulfonyl
chloride and triethylamine afforded axially chiral benzylidenecyclohexanes with high enantioselectivities up to 99% ee.
� 2004 Published by Elsevier Ltd.
The axially chiral cyclohexylidene compound was first
recognized in 1910 by the optical resolution with bru-
cine.1 Recently, the unique chiroptical property of axi-
ally chiral alkylidenecyclohexanes has been studied.2

Stereoselective syntheses of axially chiral olefins hitherto
known are based on diastereoselective reactions using
various chiral auxiliaries,3;4 some of them showing high
diastereoselectivity. For enantioselective reactions, oxi-
dation of b-seleno ketones into optically active cyclo-
hexylidene ketones5 and dehydrohalogenation with
chiral metal alkoxides or amides6 have been reported.
Very recently, enantioselective versions of the Peterson
olefination7 and the Horner–Wadsworth–Emmons8;9

reaction have been reported showing good to moderate
selectivities; one version achieved 90% ee of the product
in the reaction of 4-tert-butylcyclohexanone with lith-
ium phosphonate in the presence of a chiral ligand.8b

Although such stereoselective reactions are known, it
has been still desired to develop a more efficient reaction
for the preparation of enantiomerically pure axially
chiral olefins. We have previously reported highly
enantioselective lithiation–substitution reactions in the
presence of bis(oxazoline)s involving an asymmetric
replacement of prochiral hydrogens adjacent to sul-
fur.10;11 We now report the first synthetic method for
enantiomerically pure axially chiral benzylidenecyclo-
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hexanes including the enantioselective reaction of
cyclohexanones with the a-thio and a-seleno carbanions
and subsequent stereospecific formation of a double
bond.

The a-carbanion of benzyl phenyl sulfide was prepared
on treatment of 1-phenyl-1-(phenylthio)-1-(tributyl-
stannyl)methane 1a with n-BuLi and a chiral ligand.10b

Reaction of the sulfide 1a with 1.15 equiv of n-BuLi and
1.2 equiv of a chiral ligand in cumene for 10min at
)78 �C formed Li-1a, which was then reacted with
4-substituted cyclohexanones (1.3 equiv) to give the
products 4–6.12 The yields and the enantiomeric excesses
obtained in the reactions with 4-tert-butyl-, 4-methyl-,
and 4-phenylcyclohexanones using various chiral
ligands are shown in Table 1.13 The reaction of Li-1a
with 4-tert-butylcyclohexanone in the presence of ())-
sparteine gave the product 4 with good diastereoselec-
tivity but with low enantioselectivity (entry 1). On the
other hand, the reaction using bis(oxazoline)-iPr 3a as a
chiral ligand afforded the product 4 with excellent
enantioselectivity (99% ee for the cis isomer, 99% ee for
the trans isomer, entry 2). Each diastereomer was easily
separated by column chromatography. Bis(oxazoline)-
iPr 3a showed higher enantioselectivity than other
bis(oxazoline)s 3b and 3c (entries 3 and 4). The reaction
of Li-1a with 4-methyl- and 4-phenylcyclohexanones in
the presence of bis(oxazoline)-iPr 3a also afforded the
products 5 and 6 with high enantioselectivity (entries 5
and 6). We next examined the enantioselective reaction
of the a-seleno carbanion generated by treatment of 1,10-
bis(phenylseleno)-1-phenylmethane 1b with n-BuLi in
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Table 1. Enantioselective reaction of lithiated 1 with 4-substituted cyclohexanones

PhX Z

Ph

1) n-BuLi
2) chiral ligand 
3) 

cumene, -78 °C

O R1
PhX

Ph

OH

R1 +

Ph

HO R1

1a: X = S, Z = SnBu3
1b: X = Se, Z = SePh

cis

bis(oxazoline)

O

N N

O

R2 R2

3a: R2 = iPr
  b: R2 = tBu
  c: R2 = Ph

trans

4: X = S, R1 = tBu
5: X = S, R1 = Me
6: X = S, R1 = Ph
7: X = Se, R1 = tBu
8: X = Se, R1 = Me

N N

2: (-)-sparteine

XPh

Entry Substrate Ligand Electrophile R1 Product Yield (%) Ratioa Ee (%)b

cis:trans cis trans

1 1a 2 tBu 4 71 74:26 8 0

2c 1a 3a tBu 4 65 63:37 99 99

3 1a 3b tBu 4 68 64:36 92 95

4 1a 3c tBu 4 43 76:24 52 32

5 1a 3a Me 5 71 65:35 99 99

6c 1a 3a Ph 6 53 52:48 99 99

7d 1b 3b tBu 7 61 65:35 86 90

8d 1b 3b Me 8 73 70:30 89 90

a The diastereomer ratio was determined by 1H NMR analysis.
b The enantiomeric excess was determined by HPLC analysis using Daicel Chiralpak AD-H (entries 1–4, 6, and 7), Daicel Chiralcel OD-H (entries 5

and 8), and Daicel Chiralcel OJ-H (entry 5).
c The reaction was carried out at )90 �C.
d n-BuLi (1.3 equiv), 3b (1.4 equiv), and 4-methylcyclohexanone (2.0 equiv) were used.
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the presence of bis(oxazoline) 3a or 3b. There are a few
preceding reports of reactions of a-seleno carbanions,
which show a good level of enantioselectivity.14;15 The
enantioselective reaction of the a-seleno carbanion with
4-tert-butyl- or 4-methylcyclohaxanone in the presence
of bis(oxazoline)-iPr 3a showed high enantioselectivity
(entries 7 and 8),16 which was the highest ever reported
in reactions using a-seleno carbanions.17

The obtained products 4–8 were converted to chiral
benzylidenecyclohexanes by the modified reaction
reported in the literature,18;19 in which a-arylthio- or a-
arylseleno-b-hydroxy compounds can be transformed to
alkenes through the stereospecific anti-elimination of the
arylthio or the arylseleno group together with the
methanesulfonyloxy group. Thus, the separated diaste-
reomeric alcohols 4–8 were reacted with methanesulfo-
nyl chloride in the presence of Et3N in CH2Cl2 at room
temperature to give the axially chiral benzylidenecyclo-
hexanes 9–11 (Table 2).20 Optical purity of 9–11 was
determined by HPLC analyses using Chiralcel OD-H.
No loss of optical purity was observed during the
b-elimination. The b-elimination proceeded in an anti
fashion to give 9–11 stereospecifically. Especially,
enantiomerically pure cis-sulfides cis-4–6 gave (M)-
benzylidenecyclohexanes (M)-9–11 and trans-sulfides
trans-4–6 afforded (P)-9–11. Thus, both enantiomers
were obtained in highly optically active forms. This
procedure is the first example for the preparation of
enantiomerically pure chiral benzylidenecyclohexanes
from the corresponding cyclohexanones through an
enantioselective reaction and the subsequent anti-elimi-
nation. The absolute stereochemistry of 9–11 was
assigned by comparison of the values of the specific
rotation with those reported.3c;d

In summary, we have demonstrated the first highly
enantioselective preparation of axially chiral benzylid-
enecyclohexanes through an enantioselective reaction of
a-thio- and a-seleno carbanions of benzyl phenyl sulfide
and benzyl phenyl selenide in the presence of bis(oxaz-
oline)s and subsequent stereospecific elimination.
Acknowledgements

This work was supported by a Grant-in Aid for Scien-
tific Research (no. 11650890) from the Ministry of



Table 2. Preparation of axially chiral benzylidenecyclohexanes 9–11 from cis- and trans-4–8

PhX

Ph

OH

R

Ph

HO R

cis-4: X = S,
cis-5: X = S,
cis-6: X = S,
cis-7: X = Se,
cis-8: X = Se,

R
Ph

MsCl, Et3N 

CH2Cl2, 0 °C

R
MsCl, Et3N 

CH2Cl2, 0 °C

(M)-9-11

(P)-9-11

R = tBu
R = Me
R = Ph
R = tBu
R = Me

trans-4: X = S,
trans-5: X = S,
trans-6: X = S,
trans-7: X = Se,
trans-8: X = Se,

R = tBu
R = Me
R = Ph
R = tBu
R = Me

XPh

Ph

Entry Substrate Product Yield (%) Ee (%)a Config.

Ee (%)

1 cis-4 99 9 51 99 (M)

2 cis-5 99 10 64 99 (M)

3 cis-6 99 11 57 99 (M)

4 cis-7 86 9 88 86 (M)

5 cis-8 89 10 80 89 (M)

6 trans-4 99 9 55 99 (P)

7 trans-5 99 10 50 99 (P)

8 trans-6 99 11 52 99 (P)

9 trans-7 90 9 89 90 (P)

10 trans-8 90 10 90 90 (P)

a The enantiomeric excess was determined by HPLC analysis using Daicel Chiralcel OD-H.
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